口腔疾病防治 ›› 2017, Vol. 25 ›› Issue (11): 744–748.doi: 10.12016/j.issn.2096-1456.2017.11.014

• 综述 • 上一篇    

纳米材料和纳米技术在肿瘤放疗增敏中的研究进展

魏常博 综述(), 余东升 审校()   

  1. 中山大学光华口腔医学院·附属口腔医院,广东省口腔医学重点实验室,广东 广州(510055)
  • 收稿日期:2016-11-22 修回日期:2017-04-12 出版日期:2017-11-20 发布日期:2018-09-03
  • 作者简介:

    【作者简介】 魏常博,医师,在读硕士研究生, Email:weichb@mail2.sysu.edu.cn

  • 基金资助:
    国家自然科学基金(81272554,81472526);广东省科技计划项目(2016A020216007)

Research progress of nanomaterials and nanotechnology in cancer radiotherapy sensitization

Changbo WEI(), Dongsheng YU()   

  1. Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
  • Received:2016-11-22 Revised:2017-04-12 Online:2017-11-20 Published:2018-09-03

摘要:

在肿瘤综合治疗中,放疗所占的比例日益增高,然而肿瘤细胞的放疗抵抗性和放疗带来的副作用依然是临床肿瘤治疗中不可忽视的问题。与传统放疗增敏相比,把新型的纳米材料和技术引入肿瘤放疗,将使肿瘤治疗呈现出治疗效率更高、细胞毒性更低的趋势。本文就纳米材料和纳米技术在肿瘤放疗增敏中的相关研究作一综述。

关键词: 纳米材料, 纳米技术, 肿瘤, 放射治疗, 放疗增敏

Abstract:

With the development of nanomaterials and nanotechnology, nanomedicine possesses the vast application prospects in the field of cancer therapy. Although the proportion of radiotherapy in cancer comprehensive therapy is rising, the radiotherapy resistance of cancer cells and the side effects of radiotherapy are the existing problems. Compared with the traditional radiotherapy sensitization, it will present a higher treatment efficiency and lower toxicity to introduce nanomaterials and nanotechnology to cancer radiotherapy. This review elaborates the research of nanomaterials and nanotechnology on cancer radiotherapy sensitization.

Key words: Nanomaterials, Nanotechnology, Cancer, Radiotherapy, Radiotherapy sensitization

中图分类号: 

  • R739.8
[1] Kim JH, Byun SJ, Park SG, et al.Interval between surgery and radiation therapy is an important prognostic factor in treatment of rectal cancer[J]. Cancer Res Treat, 2012, 44(3): 187-194.
[2] Beggs AD, Dilworth MP, Powell SL, et al.A systematic review of transarterial embolization versus emergency surgery in treatment of major nonvariceal upper gastrointestinal bleeding[J]. Clin Exp Gastroenterol, 2014, 7: 93-104.
[3] 吴建峰, 姜雪松. 肿瘤放疗进入新时代: 哪些肿瘤首选放疗[J]. 抗癌之窗, 2013, 12: 13-16.
[4] Brunner TB, Kunz-Schughart LA, Grosse-Gehling P, et al.Cancer stem cells as a predictive factor in radiotherapy[J]. SeminRadiat Oncol, 2012, 22(2): 151-174.
[5] Van Oorschot B, Granata G, Di Franco S, et al.Targeting DNA double Strand break repair with hyperthermia and DNA-PKcs inhibition to enhance the effect of radiation treatment[J]. Oncotarget, 2016, 7(40): 65504-65513.
[6] Dilmanian FA, Eley JG, Krishnan S.Minibeam therapy with protons and light Ions: physical feasibility and potential to reduce radiation side effects and to facilitate hypofractionation[J]. Int J Radiat Oncol Biol Phys, 2015, 92(2): 469-474.
[7] Goldner G, Poetter R, Kranz A, et al.Healing of late endoscopic changes in the rectum between 12 and 65 months after external beam radiotherapy[J]. Strahlentherapie Onkologie, 2011, 187(3): 202-205.
[8] Goldner G, Potter R.Radiotherapy in lymph node-positive prostate cancer patients - a potential cure? Single institutional experience regarding outcome and side effects[J]. Front Radiat Ther Oncol, 2008, 41: 68-76.
[9] Gleiter H, Marquardt P.Nanocrystalline structures-an approach to new materials?[J]. Zeitschrift fur Metallkunde, 1984, 75(4): 263-267.
[10] 刘芳. 纳米材料的结构与性质[J]. 光谱实验室, 2011, 28(2): 735-738.
[11] 赵玉岭. 纳米材料性质及应用[J]. 煤炭技术, 2009, 28(8): 149-151.
[12] 朱婧. 纳米材料在医学影像上的应用[D]. 苏州: 苏州大学: 2016.
[13] Yang Y, Chao KSC, Lin C, et al.Oxaliplatin regulates DNA repair responding to ionizing radiation and enhances radiosensitivity of human cervical cancer cells[J]. Int J Gynecol Cancer, 2009, 19(4): 782-786.
[14] Xiao F, Zheng Y, Cloutier P, et al.On the role of low-energy electrons in the radiosensitization of DNA by gold nanoparticles[J]. Nanotechnology, 2011, 22(46): 465101-465110.
[15] Shi MH, Paquette B, Thippayamontri TA, et al.Increased radiosensitivity of colorectal tumors with intra-tumoral injection of low dose of Gold nanoparticles[J]. Int J Nanomedicine, 2016, 11: 5323-5333.
[16] Lin Y, Mcmahon SJ, Scarpelli M, et al.Comparing gold nano-particle enhanced radiotherapy with protons, megavoltage photons and kilovoltage photons: a Monte Carlo simulation[J]. Phys Med Biol, 2014, 59(24): 7675-7689.
[17] Zhang XD, Luo Z, Chen J, et al.Ultrasmall Au (10-12)(SG)(10-12) nanomolecules for high tumor specificity and cancer radiotherapy[J]. Adv Mater, 2014, 26(26): 4565-4568.
[18] Van den Heuvel F, Locquet JP, Nuyts S. Beam energy considerations for gold nano-particle enhanced radiation treatment[J]. Phys Med Biol, 2010, 55(16): 4509-4520.
[19] Liu CJ, Wang CH, Chien CC, et al.Enhanced X-ray irradiation-induced cancer cell damage by gold nanoparticles treated by a new synthesis method of polyethylene glycol modification[J]. Nanotechnology, 2008, 19(29): 295104-295122.
[20] Xiao-Dong Z, Di Wu, Xiu S, et al.Size-dependent radiosensitization of PEG-coated gold nanoparticles for cancer radiation therapy[J]. Biomaterials, 2012, 33(27): 6408-6419.
[21] Liu P, Huang Z, Chen Z, et al.Silver nanoparticles: A novel radiation sensitizer for glioma?[J]. Nanoscale, 2013, 5(23): 11829-11836.
[22] Porcel E, Liehn S, Remita H, et al.Platinum nanoparticles: A promising material for future cancer therapy?[J]. Nanotechnology, 2010, 21(8): 85103.
[23] 张丽, 娄嘉明, 王燕, 等. 透明质酸功能化三氧化二钆纳米颗粒的制备及其放疗增敏作用[J]. 江苏大学学报(医学版), 2016, 26(4): 311-315.
[24] Townley HE, Rapa E, Wakefield G, et al.Nanoparticle augmented radiation treatment decreases cancer cell proliferation[J]. Nanomed-Nanotechnol, 2012, 8(4): 526-536.
[25] Meidanchi A, Akhavan O, Khoei S, et al.ZnFe2O4 nanoparticles as radiosensitizers in radiotherapy of human prostate cancer cells[J]. Mater Sci Eng C Mater Biol Appl, 2015, 46: 394-399.
[26] Kleinauskas A, Rocha S, Sahu S, et al.Carbon-core silver-shell nanodots as sensitizers for phototherapy and radiotherapy[J]. Nanotechnology, 2013, 24(32): 325103.
[27] Ni J, Wu Q, Li Y, et al.Cytotoxic and radiosensitizing effects of nano-C60 on tumor cells in vitro[J]. J Nanopart Res, 2008, 10(4): 643-651.
[28] 祝静莉. 氟化石墨烯量子点对tca-8113细胞系的x射线增敏作用的研究[D]. 兰州: 兰州大学, 2016.
[29] Yu B, Liu T, Du Y, et al.X-ray-responsive selenium nanoparticles for enhanced cancer chemo-radiotherapy[J]. Colloid Surface B, 2016, 139: 180-189.
[30] Li W, Dan G, Jiang J, et al.Repeated iodine-125 seed implantations combined with external beam radiotherapy for the treatment of locally recurrent or metastatic stage Ⅲ/Ⅳ non-small cell lung cancer: A retrospective study[J]. Radiat Oncol, 2016, 11: 119.
[31] 潘晓婧, 栗震亚, 王琳, 等. 纳米壳聚糖对重离子的放射增敏和防护作用[J]. 中国组织工程研究, 2012, 16(3): 409-412.
[32] Yongjun L, Na Z.Gadolinium loaded nanoparticles in theranostic magnetic resonance imaging[J]. Biomaterials, 2012, 33(21): 5363-5375.
[33] Hernandez-Pedro NY, Rangel-Lopez E, Magana-Maldonado R, et al.Application of nanoparticles on diagnosis and therapy in gliomas[J]. Biomed Res Int, 2013, 2013: 351031.
[34] Werner ME, Cummings ND, Sethi M, et al.Preclinical evaluation of Genexol-PM, a nanoparticle formulation of paclitaxel, as a novel radiosensitizer for the treatment of non-small cell lung cancer[J]. Int J Radiat Oncol, 2013, 86(3): 463-468.
[35] Cui F, Li R, Liu Q, et al.Enhancement of radiotherapy efficacy by docetaxel-loaded gelatinase-stimuli PEG-Pep-PCL nanoparticles in gastric cancer[J]. Cancer Lett, 2014, 346(1): 53-62.
[36] Liu Z, Jiao Y, Wang Y, et al.Polysaccharides-based nanoparticles as drug delivery systems[J]. Adv Drug Deliver Rev, 2008, 60(15): 1650-1662.
[37] Wang Z, Ho PC.A nanocapsular combinatorial sequential drug delivery system for antiangiogenesis and anticancer activities[J]. Biomaterials, 2010, 31(27): 7115-7123.
[38] Kumari A, Yadav SK, Yadav SC.Biodegradable polymeric nanoparticles based drug delivery systems[J]. Colloid Surface B, 2010, 75(1): 1-18.
[39] Tian X, Lara H, Wagner KT, et al.Improving DNA double-strand repair inhibitor KU55933 therapeutic index in cancer radiotherapy using nanoparticle drug delivery[J]. Nanoscale, 2015, 7(47): 2211-2219.
[40] Pawlik TM, Keyomarsi K.Role of cell cycle in mediating sensitivity to radiotherapy[J]. Int J Radiat Oncol, 2004, 59(4): 928-942.
[41] Horsman MR, Mortensen LS, Petersen JB, et al.Imaging hypoxia to improve radiotherapy outcome[J]. Nat Rev Clin Oncol, 2012, 9(12): 674-687.
[42] Moeller BJ, Richardson RA, Dewhirst MW.Hypoxia and radiotherapy: opportunities for improved outcomes in cancer treatment[J]. Cancer Metast Rev, 2007, 26(2): 241-248.
[43] 贾谊君, 林清, 王传英, 等. 叶酸修饰稀土改性载氧碳纳米管增加乳腺癌细胞株放疗敏感性的体外实验初步研究[J]. 现代生物医学进展, 2014, 14(22): 4205-4209.
[44] Khoshgard K, Hashemi B, Arbabi A, et al.Radiosensitization effect of folate-conjugated gold nanoparticles on HeLa cancer cells under orthovoltage superficial radiotherapy techniques[J]. Phys Med Biol, 2014, 59(9):2249-2263.
[45] 邓雯, 孙茂钢, 赵艳, 等. 纳米载体介导沉默survivin基因对鼻咽癌细胞增殖凋亡及放疗敏感性的影响[J]. 贵阳医学院学报, 2016, 41(4): 377-381.
[1] 丁一,王琪. 伴糖尿病牙周炎的治疗进展[J]. 口腔疾病防治, 2018, 26(9): 545-550.
[2] 李正强,刘曙光. 头颈部侵袭性纤维瘤病1例及文献复习[J]. 口腔疾病防治, 2018, 26(9): 592-597.
[3] 许晓虎, 戴杏竹 综述, 赵望泓 审校. 纳米防龋材料的研究进展[J]. 口腔疾病防治, 2018, 26(7): 472-476.
[4] 潘朝斌. 舌鳞癌的临床综合序列治疗研究进展[J]. 口腔疾病防治, 2018, 26(5): 273-280.
[5] 郭文巧, 尹峥嵘, 张琳, 林捷, 何祥一. 组合性牙瘤:附1例报道并文献复习[J]. 口腔疾病防治, 2018, 26(2): 117-119.
[6] 孙坚, 沈毅. 虚拟手术计划辅助颌骨肿瘤切除及缺损精确重建[J]. 口腔疾病防治, 2018, 26(1): 2-8.
[7] 卢煜, 刘成霞, 刘忠俊. TRAF6在粪肠球菌感染人成骨样细胞炎症反应中的作用[J]. 口腔疾病防治, 2017, 25(7): 420-425.
[8] 孙先阁, 米姣平, 房思炼, 李惠玲, 陈雪莹, 葛雅平, 梁侃, 尧华昆. 鼻咽癌放疗患者血清α2-巨球蛋白水平及临床意义[J]. 口腔疾病防治, 2017, 25(6): 394-397.
[9] 王利宏, 张文彪, 习利军, 包爱琴, 黄世光. 牙周基础治疗对2 型糖尿病伴慢性牙周炎患者龈沟液丝氨酸蛋白酶抑制剂和肿瘤坏死因子-α水平的影响[J]. 口腔疾病防治, 2017, 25(6): 360-364.
[10] 陈仕生, 姚小武, 卢子正, 林敏校. 耳后发际联合耳屏缘切口在腮腺上极良性肿瘤切除术的应用[J]. 口腔疾病防治, 2017, 25(6): 398-400.
[11] 张焕东 综述, 谢思明 审校. Gli1 调控口腔鳞状细胞癌上皮-间充质转化的研究进展[J]. 口腔疾病防治, 2017, 25(5): 327-330.
[12] 黄洪章, 王成. 大数据时代口腔癌精准诊疗的思考[J]. 口腔疾病防治, 2017, 25(5): 273-281.
[13] 曾秉辉(综述), 余东升(审校). 环状RNA研究进展及其在口腔疾病中的研究展望[J]. 口腔疾病防治, 2017, 25(2): 123-128.
[14] 刘杰(综述), 唐华(审校). 大鼠双膦酸盐相关性颌骨坏死模型的建立[J]. 口腔疾病防治, 2017, 25(2): 133-136.
[15] 陶谦, 梁培盛. 2017版WHO牙源性肿瘤新分类之述评[J]. 口腔疾病防治, 2017, 25(12): 749-754.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 闫智奇, 叶梅, 颜学民. 空气喷磨对乳牙树脂充填微拉伸强度的影响[J]. 口腔疾病防治, 2016, 24(5): 280 -282 .
[2] 陈海(综述), 黄雨婷, 甘友华(审校). 三维有限元法在研究不同牙体修复方式中的应用[J]. 口腔疾病防治, 2017, 25(2): 129 -132 .
[3] 高燕, 蒋晓琼. 口腔手术显微镜在非手术根管治疗中的应用[J]. 口腔疾病防治, 2017, 25(6): 341 -346 .
[4] 赵丹 综述, 王永, 廖健 审校. 牙本质肩领对纤维桩修复效果影响的研究进展[J]. 口腔疾病防治, 2017, 25(9): 608 -612 .
[5] 游晓庆, 骆凯, 李艳芬, 吴春芳, 闫福华. 牙龈卟啉单胞菌脂多糖对高脂血症兔腹腔巨噬细胞炎症相关因子基因表达的影响[J]. 口腔疾病防治, 2017, 25(11): 687 -692 .
[6] 赵思语, 欧阳少波, 王军, 黄自坤, 罗清, 廖岚. 口腔鳞状细胞癌组织中环状RNA的差异表达谱分析[J]. 口腔疾病防治, 2018, 26(2): 83 -89 .
[7] 贺钧, 李自良 综述, 谢志刚 审校. 骨替代材料的骨诱导性能研究进展[J]. 口腔疾病防治, 2018, 26(2): 124 -127 .
[8] 李龙江, 韩波. 常用游离软组织瓣在口腔颌面部缺损中的应用[J]. 口腔疾病防治, 2018, 26(3): 137 -142 .
[9] 刘影, 高杰, 吴补领. 改良组织块酶消化法原代培养人牙髓干细胞的研究[J]. 口腔疾病防治, 2018, 26(3): 166 -170 .
[10] 黄丰, 何健慧, 欧阳颖. 前牙种植体失败的危险因素分析[J]. 口腔疾病防治, 2018, 26(4): 250 -253 .